Locally exact modifications of discrete gradient schemes

نویسنده

  • Jan L. Cieslinski
چکیده

Locally exact integrators preserve linearization of the original system at every point. We construct energy-preserving locally exact discrete gradient schemes for arbitrary multidimensional canonical Hamiltonian systems by modifying classical discrete gradient schemes. Modifications of this kind are found for any discrete gradient. PACS Numbers: 45.10.-b; 02.60.Cb; 02.70.-c; 02.70.Bf MSC 2000: 65P10; 65L12; 34K28

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally exact modifications of numerical schemes

We present a new class of exponential integrators for ordinary differential equations: locally exact modifications of known numerical schemes. Local exactness means that they preserve the linearization of the original system at every point. In particular, locally exact integrators preserve all fixed points and are A-stable. We apply this approach to popular schemes including Euler schemes, impl...

متن کامل

Locally exact modifications of numerical integrators

We present a new class of exponential integrators for ordinary differential equations. They are locally exact, i.e., they preserve the linearization of the original system at every point. Their construction consists in modifying existing numerical schemes in order to make them locally exact. The resulting schemes preserve all fixed points and are A-stable. The most promising results concern the...

متن کامل

Energy-preserving numerical schemes of high accuracy for one-dimensional Hamiltonian systems

We present a class of non-standard numerical schemes which are modifications of the discrete gradient method. They preserve the energy integral exactly (up to the round-off error). The considered class contains locally exact discrete gradient schemes and integrators of arbitrary high order. In numerical experiments we compare our integrators with some other numerical schemes, including the stan...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Discrete gradient algorithms of high order for one-dimensional systems

We show how to increase the order of one-dimensional discrete gradient numerical integrator without losing its advantages, such as exceptional stability, exact conservation of the energy integral and exact preservation of the trajectories in the phase space. The accuracy of our integrators is higher by several orders of magnitude as compared with the standard discrete gradient scheme (modified ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1304.6533  شماره 

صفحات  -

تاریخ انتشار 2013